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Continued fraction expressions for the eigensolutions of the 
hamiltonian describing the interaction between a single atom 
and a single field mode : comparisons with the rotating wave 
solutions 
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Department of Applied Mathematics and Theoretical Physics, The Queen’s University of 
Belfast, Belfast BT7 INN, UK 

Received 8 January 1973, in final form 25 June 1973 

Abstract. Formally exact continued fraction expressions for the eigenvectors and eigenvalues 
of the hamiltonian describing the interaction of a single atom with a single quantized field 
mode in the electric dipole approximation are presented. Explicit expressions for the eigen- 
solutions and the time dependent properties are given in some special cases. Comparisons 
are made with the corresponding rotating wave solutions. 

1. Introduction 

In a previous publication (Swain 1973, to be referred to as I) we have obtained exact 
continued fraction expressions describing the time dependent behaviour of a single, 
two-level ‘atom’ interacting with a single quantized field mode in the dipole approxima- 
tion without having recourse to the rotating wave approximation (RWA). In order to 
complete the formal discussion of this problem it is necessary to find the eigenvalues 
and eigenvectors of the hamiltonian. In this paper we give exact expressions (again in 
continued fraction form) for these quantities and we discuss the connection between this 
work and that performed in I. We give explicit expressions for the eigenvectors, eigen- 
values and certain transition probabilities in some special cases, and contrast them with 
the corresponding expressions which would have been obtained if the RWA had been 
made. 

Using a system of units in which h = 1, we may write the hamiltonian as 

where wo is the energy difference between the two atomic eigenstates, and w is the energy 
of a field quantum. ut and a are the usual creation and annihilation operators for bosons, 
and a+, a- , and a3 are the spin one half operators used in I. g is a complex coupling 
constant. 

Hamiltonians of the form (1) are of fairly frequent occurrence in physics, describing, 
for example, the interaction of a photon or phonon with an effectively two-level system. 
To give an example of an explicit expression for g, we take the case of an atom interacting 
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with the electromagnetic field in the electric dipole approximation, when g is given by 
1/2 

g =  - i ( E )  d . u  

where d is the dipole matrix element and U is the normal mode function for the field. 
Although it is the multi-atom, multi-mode generalizations of (1) which are of most 
interest, it is clearly important to examine the properties of exact solutions of this 
simple case, if only to provide a check on the validity of approximation treatments. 
The importance of the single-atom, single-mode model in quantum optics is that it is 
often used as the starting point for various theories, such as those of the laser and 
optical/radio-frequency double resonance phenomena. 

A common approximation, particularly in quantum optics, is to ignore the final two 
terms in (1). This is the so-called rotating wave approximation (RWA). Exact solutions 
of (1) in this case have been given by Jaynes and Cummings (1963). We will frequently 
make comparison between results obtained using the RWA and our more accurate 
treatment. Previous work in this area has been performed by Walls (1972) and Agarwal 
(1371). Walls has used a resolvent technique to calculate the probability of stimulated 
emission as a function of time. He finds similar results to those obtained using the RWA 
but with the frequency difference o- oo replaced by o - oo - 21g12/(w + oo). We obtain 
a somewhat more complicated result. Agarwal has used a master equation approach to 
investigate the validity of the RWA, but he was mainly concerned with the N atom, many- 
mode and N oscillator, many-mode problems. He calculated the initial rate of spon- 
taneous emission for these systems, but for the case of a single atom, which is our main 
concern here, his approximations were such that his expressions reduced to those 
equivalent to the RWA. Although the RWA is adequate for many physical situations it 
is not capable of accounting for all the phenomena of double-resonance experiments, 
for example. 

Continued fraction solutions have been obtained for related problems in quantum 
optics. For example, Autler and Townes (1955), obtained continued fraction solutions 
to the problem of the Stark effect in rapidly oscillating electric fields. This is similar to 
the situation we discuss here except that the fields involved in their case were classical. 
Shirley (1965) has given a discussion of the formal analogy between the classical and 
quantum-mechanical problems. Stenholm and Lamb (1969) have used continued 
fractions in their discussion of semiclassical laser theory, and Stenholm (1972a, b) has 
adapted this approach to give an elegant account of double-resonance phenomena. 
Continued fractions are useful because : (a) it is usually fairly easy to truncate them and 
so obtain analytical expressions at low orders ; and (b) if higher accuracy is required, 
they are reasonably convenient for numerical work, it being possible to calculate them 
using an iterative procedure. 

In $ 2 we derive formal expressions for the eigenvectors and eigenvalues in terms of 
continued fractions, and in $ 3  we discuss the time dependent properties. Explicit 
expressions are given for the eigenvalues, eigenvectors, and various time dependent 
transition probabilities in $4. The rate of convergence of the continued fractions is 
discussed in $ 5. 

2. Exact expressions for the eigenvectors and eigenvalues 

Let la) and I/3) denote the excited and ground states of the atom respectively, and let 
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In) be an eigenvector of the Bose number operator uta. Then using the completeness 
relations 

W c In>(nl = 1 and Ia>(al+lB>(BI = 1, 
n = O  

and ignoring the zero-point energy, we may write the hamiltonian (1) in the form 

(3) 

x(gln+l)(nl+g*ln)(n+lI). (4) 

We denote the exact eigenvalues of H by d, the corresponding eigenvectors by Id), and 
we make the expansion 

where the coefficients D; and Dfl, are to be determined. We can obtain equations for the 
coeficients by operating with (4) on (5); we find 

m 

Hid) = 1 ( b 0 D W  +no(D:la> +D!lP>)lln> 
n = O  

+ ( W > + D ! I a ) ) ( g J n + l l n +  1) +g*&ln- 1))). (6)  

We may replace n by n + 1 in the final term, and n by n - 1 in the penultimate term, without 
affecting the limits on the sum over n. If this is done, and the terms in 1a)ln) and in 
IB)ln) are collected together, we obtain 

30 

Hid) = c (No0 + n w ; +  g&D!- 1 +g*Jn+lD!+ 1lla>ln> 
n = O  

If Id) is to be an eigenvector of H belonging to the eigenvalue d the right-hand side of (7) 
must be equal to 

Equating separately the terms in 1a)ln) and 1P)ln) in the right-hand sides of (7) and (8) 
we find that the coefficients must satisfy the following simultaneous recurrence relations : 

(d - oo - nw)D: = g f i D f -  + g * m D ! +  

(d-no)D! = g&Di- +g*-D:+ 1 

for n = 0, 1 ,2 ,3 , .  . . . These equations are the homogeneous forms of the equations (18) 
and (19) of I ; they are also similar to the equations which arise in the problem of a two- 
level atom interacting with a classical field (eg Shirle 1965), but in the classical case, n 
extends over positive and negative integers, and g& and g f i  are both equated to 
the amplitude of the classical field. 

The equations (9) in fact generate two independent sets of coupled equations ; if one 
takes n = 0 in (9a) initially, then it is easily verified that the coefficients Po, Df , D", 
083, D f ,  . . . , are connected, whereas if one begins with n = 0 in (9b) the coefficients 
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Dg, D t ,  D { ,  D:, D$, . . . , are coupled. We must consider these two sets of equations 
separately. 

If we set lgl = 0, the equations (9) reduce to 

(do - wo - no)D:(O) = 0 

(do - no)Dfl(O) = 0 
(104 

(lob) 

which have the solutions 

s = 0,1,2,3,. . . . It is clear that the eigensolutions are characterized by the quantum 
numbers CI or B and an integer s which determines the number of photons present. The 
eigenkets corresponding to (1 1) are 

and 

Ido(B, s2)) = IP>ls2> (W 
respectively. 

Equations (9) determine the energy eigenvalues d in addition to the coefficients DE 
and D{. In principle, the eigenvalues could be determined by finding the zeros of the 
infinite determinant of the system of equations, as in the case of Hill's equation but this 
is not the approach we employ here. Our technique is to find solutions of (9) which 
reduce to the unperturbed eigenstates (11) as lgl + 0. This is done by finding two 
independent solutions for the coefficients, one applicable for n > s and the other for 
n < s. Requiring these solutions to match at n = s gives us a condition which determines 
the eigenvalues. 

We now look for solutions of (9) which reduce to (1 1) when lgl + 0. Consider first those 
solutions which reduce to (1 la): we try the substitutions 

n = s t 2 .  s+4. s+6..  . . [ g"-,D:(cr, s) in!\ 'I2 - - 

and 

where the quantities ,U,,, An, I,, m, are to be determined. As we shall see the coefficient 
D:(cr, s), in terms of which all the other coefficients are measured, is fixed by requiring 
that the eigenvectors be normalized. 
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Substituting from (13a) and (14a) into (8a), assuming n > s, we find that ( l l a )  and 
( l lb)  are solutions providing that 

7 n = s+2,s+4,s+6, . .  . . (15) Ig12(n + 1) A, = d-w,-nw- 
P n +  1 

Similarly, putting (13a) and (14a) into (9b) (assuming n > s) leads to 

n = s + l , s + 3 , s + 5  ,... . Ig12(n+ 1) 
A n + l  ' 

p,, = d-nw- 

By repeated use of (13) and (14) one finds that the 1, and p, are continued fractions. For 
example, 

(17) 
An = d-w,-nw-(g\2(n+1) 

d -(n+ 1 ) ~ -  lgI2(n+2) 
d-w0-(n+2)w- . . . 

In (15), (16) and (17) the d is understood to stand for the eigenvalue d(a, s) which is yet to 
be determined. 

Likewise, by putting (13b) and (14b) in (94  and (9b) for n < s, we find that the I, 
and m, are jni te  continued fractions defined by the relations 

and 

n = s-l ,s-3,s-5,  . . .  kI2n 
1,- 1 

m, = d-nu--, 

The continued fractions A,,,un, I ,  and m, also arose in I, where they are discussed in a 
little more detail. 

Putting n = s in (9a) we obtain the relation 

(d - wo - sw)D;(a, s) = 
\ % - l  P s + l  

Now Dz(a, s) is the coefficient of la)\s) in the expansion (5), and we wish this quantity 
to be non-zero in the limit (g( + 0 ; this implies that 

This equation determines the energy eigenvalues d(a, s) ; bearing in mind that m,- s)) 
and ps+ ,(d(a, s)) are functions of d(a, s), it follows that it will have an infinite number of 
roots. For future reference, we denote the function of d on the left-hand side of (21) by 

The procedure for finding the (p, s) eigensolutions is entirely analogous to that just 
&,S(d). 

described for the (ar, s) solutions ; we make the substitutions 
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and 

and we find that (22) and (23) are solutions providing that the An,  p n ,  1, and mn satisfy the 
same equations as before (ie equations (15), (16), (18) and (19)). By considering the 
case n = s we find that the (/3, s) eigenvalues are determined by the equation 

We denote the left-hand side of this expression by Ap,s. 
Although equations (21) and (24) each have an infinite number of roots, they possess 

properties which greatly simplify the problem of locating these roots. From the way 
in which we have formulated the problem, it is clear that the root of (21) which tends to 
wo +so as )gJ tends to zero, and the root of (24) which tends to so as (g) tends to zero, are 
of special significance ; we denote these two roots by d( + , s + 1) and d( -, s) respectively. 
Now, using the definitions of the continued fractions (equations (15), (16), (18), and (19)), 
one can show straightforwardly that : 

(i) if d(s), given as an explicit function of s, satisfies (21), then it also satisfies an equa- 
tion similar to (21) but with s replaced by s f2 .  As a consequence, it follows that if d(s) 
is a solution of (21), then d(sf2n) is also a solution of (21), where n is an integer. (It is 
understood that the argument of d(s f 2n) can never be negative.) 

(ii) if d(s), given as an explicit function of s, satisfies (21), then it also satisfies an 
equation similar to (24) but with s replaced by s f 1. It follows that if d(s) satisfies (21), 
then d(s f (2n + 1)) satisfies (24). 

These two statements also hold if the roles of equations (21) and (24) are inter- 
changed. 

We note that d( -, s +  1) is also a solution of (21) as lgl tends to zero. It follows that if 
the eigenvectors are continuous functions of lg( then the roots of (21) are 

. . . , d( +, S- 5),  d( f , s - 3), d( f , s - I), d( f , S+ I), d( f , S+ 3), d( +, S+ 5),  . . 
and the roots of (24) are 

. . . ,d(T,s-4),d(T9s-2),d(T,s),d(T,s+2),d(T,s+4),.. . . 
It is clear that the roots, d( +, s) and d( -, s) are fundamental in the sense that once they 
are known as explicit functions of s then all the roots of (21) and (24) can be generated. 

Using (13) and (14) the (a, s) eigenvectors may be written as 

1 %  s ; d(a, SI) 
int(s/2) (g * ) 2 n  - 1 (~./(~-22n+1)!)"~ I 

~ n +  1 6 -  2 n  + 2 * . . mi- 1 



Continued fraction solution to single atomlmode problem 1925 

where 
i f s  even 

if s odd 
int(s/2) = 

and M : - ~ , +  ms-2n+ ,(d(a, s)) etc. It is clear that D:(a, s) is determined by normaliza- 
tion. Our notation for the (a, s) eigenvectors shows explicitly that the (a, s) eigenvectors 
are functions of the d(a, s) where d(a, s) is any root of (21). The (8, s )  eigenvectors would 
be written I/?, s;  d(/?, s)) where d(,!?, s) is any root of (24). The corresponding expression 
for I,!?, s ; d(P, s)) is obtained by interchanging a and ,!?, A, and p,, I ,  and m,, in (25). 

The d(a, s) which appears in (25) may be any root of (21). It can be shown that if we 
take d(a, s) = d( +, s + 1 +2n) in (25), and then take the limit lg( + 0, we obtain the 
unperturbed eigenvectors la)ls f 2n), whereas if we take d(a, s) = d( - , s f 2n) and then 
let lg( + 0, we obtain the unperturbed eigenvectors I,!?)lsf2n). In fact we can show 
generally that 

(26) 
and 

la, s ;  d( +, s + 1 f 2n)) = la, s + 1 +2n ; d( +, s + 1 2n)) 

la, s ; d( - , s f 2n)) = I,!?, s & 2n ; d( - , s f 2n)). 

Thus in order to find all the eigenvalues and all the eigenvectors of H it is necessary 
to solve either (21) or (24), and substitute the resulting eigenvalues into either la, s ; d(a, s ) )  
or I,!?, s; d(,!?, s)). (21) and (24), and la, s; d(a, s)) and I,!?, s ;  d(,!?, s)) are formally equivalent, 
although one member of the pair may be more convenient to use in practice than the 
other. It is clear that the eigenvectors are characterized completely by the eigenvalues, 
so in future we will write 

IY, s; 4% 4) = M y ,  s)), y = a or /?. 

3. The time dependent properties 

In I we have obtained expressions for the time dependent conditional probabilities 
P);;",t) where PJ;",t) is the probability that the system will be in the state 1S)ln) at time t 
if it was in the state I y ) l s )  at time 0. I y )  and IS) label states of the atom, and In) and 
Is) denote states of the field in which there are n and s photons present respectively. 
The expressions obtained were of the form 

where 

. - ,  . ,  I 
ms- 1ls-2 * * . (1" or mn)Ay,s' 

n = s - 2 , s - 4 , s - 6 , .  . . , if y = a, and I n = s - l , s - 3 , ~ - 5 , . .  . , if y = ,!? 
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where y = CI or fl. To obtain the corresponding expressions for L$:S,(x) replace the A’s 
by the p’s and vice versa, and the I’s by the m’s and vice versa, in (28) and (29). A,,,(x) is 
the function on the left-hand side of (21) if y = c( and on the left-hand side of (24) if 
y = b. The sequence lln-2.. . in (28) terminates in p,+ if n -  s is even, and in 
As + if n - s is odd. A similar interpretation applies to (29). 

These results may be cast into a more symmetric form by making use of the relation 

(30) A S P S -  l & - 2 .  * .  (A0 or Po) 
m,- l l s -2ms-3 . .  . ( lo  or mo) An,s  = 

which is easily established using the definitions (21) for A,,,, and (16), (17), (18) and (19) 
for the continued fractions. The sequences in (30) terminate in A, and m, ifs is even and 
in po and mo ifs is odd. A similar relationship holds for As,s but with A, and p,, I ,  and 
m, interchanged. Using (30) in (28) and (29) we may show, for example, that 

Similar relations hold for Lj:;(x) and for the situation in which n < s. The symmetry 
relation 

obviously follows. 
Now in I it was shown that the poles of L%;”,(x) determine the exact eigenvalues of N, 

whereas in the present paper we have shown that they are determined by the zeros of 
AJx) = 0. Comparison of (30), (31) and (32) makes it plausible that these two pre- 
scriptions for finding the eigenvalues are equivalent. 

An alternative way of developing the time dependent theory would be to expand the 
state Iy, s) in terms of the basic vectors Id), and then to pick out the component in 
16)ln). The treatment given in I is more succinct. 

Pa’;S,((t) = P$:(t) (33) 

4. Explicit case : comparisons with the rotating wave solutions 

4.1. The case of resonance 

A special case occurs if the atom and the field mode are resonant, for then o = oo, 
and the two fundamental eigenvalues become equal. For the case of equation (21), 

d( +, s+ 1) + d( -, s+ 1) -, (s+ 1)o as lgl -, 0. 

The resonant situation is a particularly simple one to discuss, as the properties of the 
system are now functions of only three variables s, y = g/o, and z = ut. Let us assume 

Irlm << 1, (34) 
and make a series expansion for the fundamental roots in powers of Iy(.  It is easily found 
that 

d ( + , s + i )  = o[s+i ~ l ~ l J s + l - 3 t y i ~ + $ i y i ~ ( ~ + 1 ) ~ ’ ~ - a t ~ 1 ~ ( ~ + 1 ) ~ .  . .I. (35) 
The third term, -#y12 which is the same for all eigenvalues, merely represents a shift 
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in the datum point for measuring energies ; the other terms involving powers of (yI 
represent self-energy terms of the sort which give rise to the Lamb shift and the Bloch- 
Siegert shift. 

We note that the RWA (see eg Swain 1972) gives only the first two terms in (35), so 
that, at resonance, the RWA is correct only to first order in 1yI. It is in the resonant 
situation that the RWA should be most accurate. 

Evaluating the unnormalized fundamental eigenvectors using (35) and (25) correct 
to second order in (y)’ gives 

14 f , s + 1)) 

(36) 
’~J+2)olp)ls + 3), 

4 

We note that in this expression the two unperturbed eigenstates la>ls) and Ip) ls )  have 
approximately equal weighting. In the limit, IyI + 0 the states Id( +, s +  1)) arid 
Id( - , s + 1)) become degenerate, and the eigenvectors become 

~ d ( + , s + l ) )  .+ Ia>ls>TYIP>IS+1>, (37) IYI 
which are the states normally used as basis states in ordinary degenerate perturbation 
theory. They are also the exact eigenstates of the rotating wave hamiltonian at resonance, 
so that the RWA gives the eigenstates of (1) correct to zeroth order only. 

We may also calculate the time dependent properties. Consider first transitions from 
the unperturbed state Ia)ls) to the states shown in figure l(a). The transition probability 
from Ict)ls) to any of these states has an amplitude of y2 or larger. Consider first the 
calculation of PE;$(t). According to (28), (16) and (19), 

1 lo 

€ - ( S +  1)- (yI2(s+ 1) 

L:;:(€) = 

(38) 
€ - (s + 1)- IyI2(s+ 1) - IYl’S 

€- (s-  1)- IyI2(s- 1) 
r - (s+3) .  . . €-(s-  1). . . 

CO) 

Figw 1. The transitions which have amplitudes of the order of y2 or larger. 
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where E = x/o. This has poles near E = s +  1, s- 1, s +  3,. . . , the precise positions of 
which are given by (35) on taking the appropriate sign and value of s. The integral in 
(27) may be evaluated using the calculus of residues, when we find, to second order in w, 
e;:@) = [1 -+1yI2s] - [I - t l y I2 (3s+ I)] sinz(Os+lT) 

++1y12s cos(e,+ l z )  cos(e,- COS(27) (39) 
where 

8 s  = IYlJ31 -ilY12s). (40) 

We may proceed in a similar fashion to find the probabilities of the other transitions 
shown in figure l(a). For these, we find 

G:s,+1(4 = [1 -*IYIZ(s+ 1)l sin2(&+ 1 4  (41) 

P:;:+z(r) = i I~ I~ ( s+2)s in~(~ ,+17)  (42) 

P;;,"-,(t) = ;S/yI2ssin2(8,- lz) (43) 
PQB;",~(?) = ily12s{l -~[sinZ(~,+1t)+sin2(~,_,7)]-cos(e,+l~)cos(es~ l ~ ) c o s  27). (44) 

In a typical experiment, the higher frequency terms such as the final terms in (39) 
and (44) would be averaged to zero. If the quantity being measured was the transition 
probability from atomic state la) to I/.?) this would be given by 

~ ( z )  = ~ : ~ , + , ( z ) + e : : - ~ ( r )  N 31yI2s+(l -$Iy12s)sin2(8,s) 

where we have assumed s >> 1 and the bar indicates that high frequency contributions 
have been omitted. This expression is consistent with the low frequency terms of Shirley's 
(1965) semiclassical treatment. 

In the RWA, the corresponding expressions are 

~ ; , s ( R w A ;  7) = 1 - sin2(lylJs+lz) (45) 

which are correct only to first order in IyI. 

find 
In a similar fashion, for the transitions from the state (p, s) indicated in figure l(b) we 

and 



Continued fraction solution to single atomlmode problem 1929 

From (44) and (52) we see that ' ( 7 )  = P!;:+ l(t) as required by (33). The correspond- 
ing expressions for P$;$7) and P:,$ I(?) in the RWA are given by expressions similar to (45) 
and (46) respectively but with the arguments of the sine functions changed from Iyl@ 
to IYl&* 

4.2. The general case 

It is not difficult to derive expressions for the eigenvalues which are valid off resonance 
using a process of successive approximation. The simplest, non-trivial approximation 
to the eigenvalues is the RWA, which gives 

~ ( R W A ;  + , s + l )  = s w + - t ( w + o O ) ~ U  

where 

U = [ S 2  + Jgl2(s + 1)]1'2,, 6 = go - WO). 

(53) 

(54) 

One may then use this expression in the eigenvalue equation (21) to obtain an expression 
valid to higher order in lg(, and so on. For example, correct to third order in (gl, we find 

d ( f , s + l )  = so+gw+o, )+-  s+,i rv* I g l 2 (  2 OTU R f U  

where 
v* = {[6-~(-+-)]2+lg,2(s+l)) s s + 2  1 P  

2 R T U  R k U  

(55) 

It is interesting to note that (55) is of the same form as (53) but with the o and oo re- 
placed by the effective values 

and 

everywhere except in the so term on the right-hand side of (53). 
At resonance, (55) reduces to the first four terms of (35), ie it gives d( f , s + 1) at 

resonance correct to third order in l y l ,  whilst well off resonance, ie for S2 >> Ig12(s+ l), it 
gives 

+- Jg12s + O(lg14) 1gI2(s + 1) d ( + , s + l )  = so+o,-  
0--00 w+o, 

d(- , s+l )  = ( s+ l )w+ Ig12(s+ 1)_Ig12(~+2)+*(lg14), 
a--00 o+o, 

the usual non-degenerate second-order perturbation theory results. The expansion of 
(54) in (53) gives only the first two terms of (60) and (61). 
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(60) and (61) may be used to find the positions of the multiple quantum transitions 
which occur in radio-frequency spectroscopy (see eg Stenholm 1972a, b and references 
given therein). The time averaged transition probability, PP:+ 2 k +  1, where k is a positive 
integer, is a maximum when the parameters are so chosen that Id( + , s) - d( - , s + 2k + 1)l 
is a minimum. Replacing s by s + 2k in (61) and subtracting the result from (60), we find 
that the minimum occurs (to this level of approximation the minimum is zero) when 

In arriving at this well known result we have put wo ‘v (2k + l)w in the denominations of 
(60) and (61). This is an example of a situation in which the rotating and anti-rotating 
terms in the hamiltonian (1) give approximately equal contributions. 

It is straightforward to proceed to obtain expressions for the remaining transition 
probabilities as before, but as the general method is clear, and the resulting expressions 
cumbersome, we will give just one example, e:”,+l(t). Assuming that the dominant 
contribution comes from the poles at d( + , s + 1) and d( -, s + 1) we find that 

where 

Other poles give rise to contributions with amplitudes of order IyI4 or smaller. 
Expressions analogous to (64) were first derived by Bloch and Siegert (1940) for the 

case of a spin of one half subjected to a classical oscillating magnetic field. The argument 
of the sine function in (64) is a minimum when A = 0, ie when 

In the RWA, the condition (66) becomes simply o = coo, and the shift in (66) from this 
value is referred to as the Bloch-Siegert shift in the classical case. Because our calculation 
is fully quantum mechanical, our expression for the Bloch-Siegert shift includes the 
effects of spontaneous emission. We note that the Bloch-Siegert condition (66) is 
equivalent to 

0; = w* 
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if o* and o! are evaluated correct to second order in lg12 ; ie, it is the condition for re- 
sonance of the effective frequencies defined in (58) and (59). (66) is also the condition 
which makes d( + , s + 1) - d( - , s + 1) a minimum. 

The condition (66) has also been derived by Walls (1972), but his expression for 
Pi:+ l(t) namely 

Ig12(s + ') sin2[A2 + (gI2(s + l)] ' I 2 t  
Igl2(s + 1) + A2 p;:ss+ 1 0 )  = 

differs from ours. Walls used a resolvent method, and the discrepancy between his 
results and ours may be traced to his having used a less accurate expression for the poles 
of the resolvent than that given by (55). 

In the RWA an expression similar to (67) is obtained but now A is given by A = 6 
rather than by (65). We can obtain the RWA result from (64) and (65) by neglecting the 
terms in lgI2/(w + 0,). 

5. Convergence of the continued fractions 

In previous sections we have truncated the continued fractions so as to obtain analytic 
expressions ; in this section we consider the validity of the approximations involved by 

comparing the results obtained for the eigenvalues and transition probabilities by 
taking the second, third, and fourth approximants to the continued fractions which 
occur. As we are only interested in testing the rates of convergence, we consider the 
simplest cases, namely we find the roots of 1, = 0 and we calculate E$(T) for 
the three cases, lylz = 0.1, o/oo = 1, lyI - - 0.1, o/wo = 1.2108 and lylz = 1, o/wo = 3 .  
We emphasize that the values of l y l z  are chosen solely to test the rate of convergence 
and do not correspond to physically realizeable situations. (In quantum optics, for 
example, typically lylz - 6 x lO-"/(oV) where V is the volume of the system (in MKS 
units) and we assume w - o,.) We have taken the s = 0 case for simplicity ; we are not 
attempting to construct a theory of spontaneous emission which of course would require 
a many mode model. The values of o/w, in the last two cases are chosen in such a way as 
to make F'$ (RWA, 7) oscillate between 1 and 0-1. 

In table 1 we have displayed the positions of the roots of I ,  = 0 (measured in units of 
wo) for the three values of IyI2 and o/oo considered. (The first approximant to I ,  = 0 
has two roots, the second three roots, and so on.) In the first two cases, ly lz = 0.1 and 
w/o ,  = 1 and 1.2108, the differences between the first and second approximants for 
the first two roots is significantly larger than the differences between the second and 
higher approximants. The convergence of the third and fourth roots is slower, but their 
effect on the transition probabilities is of lower order than the effect of the first two roots. 
In the third case considered, IyJz = 1 and o/oo = $ the convergence of all the roots is 
slow. 

Similar effects are seen in figures 2 and 3, which show E$(T) as a function of T for 
IyI2 = 0.1 and w/oo = 1 and 1.2108 respectively; there is a significant difference between 
the first and second approximants, but an almost imperceptible difference between the 
second and higher ones. In figure 4, we see that the differences between all four approxi- 
mants considered are appreciable. In figures 3 and 4 it is apparent that the more accurate 
solutions swing closer to zero than the RWA solutions. Also the rate of transfer of energy 
between the atom and the field is retarded as compared with the RWA. 

5 
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Table 1. The zeros of A,, calculated in the first, second, third and fourth approximants as 
functions of y and w/wo 

Approximan ts 
w - 

Y 0 0  1st 2nd 3rd 4th 

0.1 1 0,6838 
1.3162 

- 

0.1 1.2108 0.7721 
1.4387 
- 

1.0 1.6667 0.2793 
2.3874 

0.6386 
1.2638 
30976 

0.7446 
1.3777 
3.5101 

0.0928 
1.9220 
4.9853 

0.6359 0.6358 
1.2588 1.2585 
2.5 169 2.4276 
3.5883 3,4834 
- 5.1947 

0.7434 0.7437 
1.3738 1.3737 
3.0335 2,9679 
4.1 141 4.0037 
- 6.0194 

0.0588 0.05408 
1.7623 1.7127 
3.5661 3.1552 
6.6129 5.8334 
- 8.91 16 

C 

Fm 2. Plot of C$(T) against T for y2 = 0.1 and w = oo. The full curve is the first approxi- 
mant (RWA), the broken curve is the second approximant and the full circles are the third 
approximant. The difference between the third and fourth approximants is indiscernible in 
this diagram. 

We would expect the rates of convergence to be determined mainly by the value of 
(y I2(s  + 1) in the general case, eg we would expect little difference between the rates of 
convergence of the probabilities c::(r) and p"d;::(z) if 1gI2(s+ 1) N (g'12(s'+ 1) and of = w, 
ob = a,,. Now the case we have examined (s = 0) is a special case in that high fre- 
quency terms such as the final term in (39) are excluded; nevertheless, we would not 
expect this to affect significantly the rate at which successive approximants converge. 
Thus for example we would expect the second approximant to be adequate if the con- 
dition lyI2(s + 1) 5 0.1 is satisfied. Stenholm (1972b) has discussed the rate of convergence 
of continued fractions akin to ours for (y I2(s + 1) 2 1. 
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Figure 3. Plot of e$(?) against 7 for y2 = 0.1 and-w = 1 . 2 1 0 8 ~ ~ .  The full curve is the first 
approximant (RWA), the broken curve is the second approximant and the full circles are the 
third approximant. The third and fourth approximants differ significantly only in the final 
two points shown. 

r 

Figure 4. Plot of e::(?) against T for y2 = 1.0 and w = 1.66670,. Full curve: first approxi- 
mant (RWA); broken curve: second approximant ; full circles: third approximant ; chain 
curve: fourth approximant. 

For the case of the interaction of a quantized field mode with a two-level atom, the 
interaction constant is given by (2). Assuming a value for p - 3.33 x 10-30Cm, and 
that the electromagnetic radiation is incident upon a cell of surface area m2 we 
find 

where W is the laser power in watts. Clearly for optical frequencies, o - 1015 Hz, 
ly12(s + 1) will be very small for currently accessible maximum intensities, but at lower 
frequencies, eg o - lo9 Hz, there should be little difficulty in making IyI2s an appreciable 
fraction of one. In this case the value of s will be so large that the effects of spontaneous 
emission will be negligible. 



1934 S Swain 

Acknowledgments 

The author is grateful to Miss Kathleen McCollum who carried out the computer 
calculations, and to Dr D F Walls for communicating the results of his calculations 
before publication. This research was supported by the Advanced Research Projects 
Agency ofthe Department of Defense and was monitored by the Office of Naval Research 
under contract number N00014-69-C-0035. 

References 

Agarwal G S 1971 Pliys. Rev. A 4 1778-81 
Autler S and Townes C H 1955 Phys. Rev. 100 703-22 
Bloch F and Siegert A 1940 Phys. Rev. 57 522-1 
Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89-109 
Shirley J H 1965 Phys. Rev. B979-87 
Stenholm S 1972a J. Phys. B: Atom. molec. Phys. 5 878-89 
- 197213 J. Phys. B: Atom. molec. Phys. 5 89&5 
Stenholm S and Lamb W E Jr 1969 Phys. Rev. 181 618-35 
Swain S 1972 J.  Phys. A:  Gen. Phys. 5 1587-600 
__ 1973 J. Phys. A:  Math. Nucl. Gen. 6 192-204 
Walls D F 1972 Phys. Lett. 42A 217-8 


